Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur les défis de l'apprentissage profond, en explorant la dimensionnalité, les performances et les phénomènes sur-adaptés dans les réseaux neuronaux.
Discute de la différenciation automatique, en mettant l'accent sur la différenciation en mode inverse pour optimiser les filtres de couche convolutifs par descente de gradient.
Couvre l'inférence statistique, l'apprentissage automatique, les SVM pour la classification des pourriels, le prétraitement des courriels et l'extraction des fonctionnalités.
Couvre une analyse SWOT de l'apprentissage automatique et de l'intelligence artificielle, explorant les forces, les faiblesses, les possibilités et les menaces sur le terrain.
Déplacez-vous dans le biais spectral des réseaux neuronaux polynômes, analysez l'impact sur l'apprentissage des différentes fréquences et discutez des résultats expérimentaux.
Explique la rétropropagation dans les réseaux neuronaux, la mise à jour des poids en fonction des erreurs et l'évaluation des réseaux par le biais de pertes d'entraînement et de tests.
Explore les courbes de double descente et la surparamétrisation dans les modèles d'apprentissage automatique, en soulignant les risques et les avantages.
Explore les noyaux pour simplifier la représentation des données et la rendre linéairement séparable dans les espaces de fonctionnalités, y compris les fonctions populaires et les exercices pratiques.