Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
Introduit des opérateurs proximaux, des méthodes de gradient et une optimisation contrainte, explorant leur convergence et leurs applications pratiques.
Couvre l'optimalité des taux de convergence dans les méthodes de descente en gradient accéléré et stochastique pour les problèmes d'optimisation non convexes.
Couvre les méthodes de descente de gradient pour les problèmes convexes et non convexes, y compris la minimisation convexe lisse sans contrainte, lestimation de la vraisemblance maximale, et des exemples comme la régression de crête et la classification dimage.
Explore l'optimalité des taux de convergence dans l'optimisation convexe, en mettant l'accent sur la descente accélérée des gradients et les méthodes d'adaptation.
Explore la descente de gradient stochastique, couvrant les taux de convergence, l'accélération et les applications pratiques dans les problèmes d'optimisation.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.