Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de réduction de la variance dans l'optimisation, en mettant l'accent sur la descente en gradient et les méthodes de descente en gradient stochastique.
Couvre les bases de l'optimisation, y compris les métriques, les normes, la convexité, les gradients et la régression logistique, en mettant l'accent sur les forts taux de convexité et de convergence.
Explore les modèles de signaux concis, la détection compressive, la parcimonie, les normes atomiques et la minimisation non lisse en utilisant la descente de sous-gradient.
Explore les algorithmes d'optimisation composite, y compris les opérateurs proximaux et les méthodes de gradient, avec des exemples et des limites théoriques.
Explore les bases de l'optimisation telles que les normes, la convexité et la différentiabilité, ainsi que les applications pratiques et les taux de convergence.
Couvre les méthodes de descente de gradient pour les problèmes convexes et non convexes, y compris la minimisation convexe lisse sans contrainte, lestimation de la vraisemblance maximale, et des exemples comme la régression de crête et la classification dimage.