Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'autocorrélation, la périodicité et les corrélations fallacieuses dans les données de séries chronologiques, en soulignant l'importance de comprendre les processus sous-jacents et de mettre en garde contre les erreurs d'interprétation.
Couvre les bases des réseaux neuronaux convolutionnels, y compris l'optimisation de la formation, la structure des couches et les pièges potentiels des statistiques sommaires.
Explore les modèles de séries chronologiques, en mettant l'accent sur les processus autorégressifs, y compris le bruit blanc, AR(1) et MA(1), entre autres.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Explore la psychoacoustique, le traitement des signaux et l'interprétation par le cerveau des fréquences sonores, couvrant des sujets comme le phénomène fondamental manquant et le fonctionnement intérieur de la cochlée.