Couvre le concept d'échantillonnage, le théorème d'échantillonnage, la reconstruction du signal et la conversion des signaux analogiques en signaux numériques.
Explore les techniques de Monte Carlo pour l'échantillonnage et la simulation, couvrant l'intégration, l'échantillonnage d'importance, l'ergonomie, l'équilibrage et l'acceptation de Metropolis.
Explore les signaux, les instruments et les systèmes, couvrant ADC, Fourier Transform, échantillonnage, reconstruction des signaux, alias et filtres anti-alias.
Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.