Moment cinétique (mécanique quantique)En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.
Spherical basisIn pure and applied mathematics, particularly quantum mechanics and computer graphics and their applications, a spherical basis is the basis used to express spherical tensors. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. While spherical polar coordinates are one orthogonal coordinate system for expressing vectors and tensors using polar and azimuthal angles and radial distance, the spherical basis are constructed from the standard basis and use complex numbers.
Spin-weighted spherical harmonicsIn special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l, just like ordinary spherical harmonics, but have an additional spin weight s that reflects the additional U(1) symmetry.
Moment cinétiqueEn mécanique classique, le moment cinétique (ou moment angulaire par anglicisme) d'un point matériel M par rapport à un point O est le moment de la quantité de mouvement par rapport au point O, c'est-à-dire le produit vectoriel : Le moment cinétique d'un système matériel est la somme des moments cinétiques (par rapport au même point O) des points matériels constituant le système : Cette grandeur, considérée dans un référentiel galiléen, dépend du choix de l'origine O, par suite, il n'est pas possible de com
Rotation operator (quantum mechanics)This article concerns the rotation operator, as it appears in quantum mechanics. With every physical rotation , we postulate a quantum mechanical rotation operator which rotates quantum mechanical states. In terms of the generators of rotation, where is rotation axis, is angular momentum, and is the reduced Planck constant. Translation operator (quantum mechanics) The rotation operator , with the first argument indicating the rotation axis and the second the rotation angle, can operate through the translation operator for infinitesimal rotations as explained below.