Méthode de l'ellipsoïdeEn optimisation mathématique, la méthode de l'ellipsoïde est une méthode itérative utilisée pour minimiser des fonctions convexes. En informatique théorique, cette méthode est connue comme étant le premier algorithme de complexité polynomiale découvert pour résoudre les problèmes d'optimisation linéaire. L'algorithme construit une suite d'ellipsoïdes de plus en plus petits, qui enserrent à chaque étape le minimum de la fonction objectif.
Sous-différentielEn mathématiques, et plus précisément en analyse convexe, le sous-différentiel est un concept permettant de décrire la variation locale d'une fonction convexe (à valeurs réelles donc) non nécessairement différentiable dans un sens classique, celui auquel on attache aujourd'hui le nom de Fréchet. Au lieu d'être la pente de l'application linéaire tangente (c'est-à-dire, la dérivée) au point considéré, qui n'existe pas nécessairement, le sous-différentiel d'une fonction convexe est l'ensemble des pentes de toutes les minorantes affines de la fonction, qui sont exactes en ce point, c'est-à-dire qui ont en ce point la même valeur que la fonction convexe qu'elles minorent.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Fonction quasi-convexeEn mathématiques, une fonction quasi-convexe est une fonction à valeurs réelles, définie sur un ensemble convexe d'un espace vectoriel réel, telle que l' de tout ensemble de la forme est convexe ou encore telle que, sur tout segment, la plus grande valeur de la fonction est atteinte à l'une des extrémités. L'opposée d'une fonction quasi-convexe est dite quasi-concave. Toute fonction convexe est quasi-convexe mais la réciproque est fausse : par exemple, toute fonction monotone sur un intervalle réel est quasi-linéaire, c'est-à-dire à la fois quasi-convexe et quasi-concave.
Méthode des plans sécantsvignette|Application de la méthode des plans sécants au problème du voyageur de commerce. En mathématiques, et spécialement en optimisation linéaire en nombres entiers, la méthode des plans sécants, ou cutting plane method, est une méthode utilisée pour trouver une solution entière d'un problème d'optimisation linéaire. Elle fut introduite par Ralph E. Gomory puis étudiée par Gomory et Václav Chvátal. Le principe de la méthode est d'ajouter des contraintes au programme linéaire pour le raffiner, et le rapprocher des solutions intégrales.