Introduit des réseaux neuronaux convolutionnels pour le traitement de l'image, couvrant les composants de base, les architectures et les applications pratiques, y compris la dénouement et la segmentation.
Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.
S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Présente une puce photoélectronique entièrement analogique pour les tâches de vision à grande vitesse, répondant aux défis du calcul classique et proposant un cadre optique-électrique hybride.