Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Explore les mathématiques des modèles de langues, couvrant la conception de l'architecture, la pré-formation et l'ajustement fin, soulignant l'importance de la pré-formation et de l'ajustement fin pour diverses tâches.
Explore l'apprentissage profond pour la PNL, en couvrant les insertions de mots, les représentations contextuelles, les techniques d'apprentissage et les défis tels que les gradients de disparition et les considérations éthiques.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.