Séance de cours

Réseaux Convolutifs : Motivation & Idées

Séances de cours associées (65)
Les principes fondamentaux de l'apprentissage profond
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Modèles génériques : auto-attention et transformateurs
Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Analyse des documents : Modélisation des sujets
Explore l'analyse documentaire, la modélisation thématique et les modèles génériques pour la production de données dans l'apprentissage automatique.
Réseaux neuronaux : apprentissage multicouche
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Réseaux neuronaux : formation et optimisation
Explore la formation et l'optimisation des réseaux neuronaux, en abordant des défis tels que les fonctions de perte non convexes et les minima locaux.
Réseaux neuronaux convolutionnels
Explore les réseaux neuronaux convolutionnels, en mettant l'accent sur les couches, les filtres, la mise en commun et le partage du poids.
Analyse numérique
Couvre des sujets d'analyse numérique avancés, y compris les réseaux neuronaux profonds et les méthodes d'optimisation.
Représentation des données : PCA
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Deep Learning: Représentations de données et réseaux neuraux
Couvre les représentations de données, le sac de mots, les histogrammes, le prétraitement des données et les réseaux neuronaux.
Introduction à l'apprentissage automatique : apprentissage supervisé
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.