Plonge dans la propagation en arrière dans l'apprentissage profond, répondant au défi de la disparition du gradient et à la nécessité d'unités cachées efficaces.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explique le processus d'apprentissage dans les réseaux neuronaux multicouches, y compris la rétropropagation, les fonctions d'activation, la mise à jour des poids et la rétropropagation des erreurs.
Introduit les réseaux de mémoire à long terme (LSTM) comme une solution pour la disparition et l'explosion des gradients dans les réseaux neuronaux récurrents.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Couvre les modèles de séquence à séquence, leur architecture, leurs applications et le rôle des mécanismes d'attention dans l'amélioration des performances.