Fournit une vue d'ensemble de l'apprentissage par renforcement, en se concentrant sur le gradient de politique et les méthodes critiques des acteurs pour les réseaux de neurones artificiels profonds.
Couvre les méthodes de prédiction sans modèle dans l'apprentissage par renforcement, en se concentrant sur Monte Carlo et les différences temporelles pour estimer les fonctions de valeur sans connaissance de la dynamique de transition.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore les sujets d'apprentissage avancés du renforcement, y compris les politiques, les fonctions de valeur, la récursion de Bellman et le contrôle de la TD sur les politiques.
Explore les approches et les défis modernes en matière d'acquisition de données pour l'apprentissage de contrôleurs optimaux au moyen de démonstrations et de méthodes axées sur les données.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.