Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'essentiel de la science des données, y compris le traitement, la visualisation et l'analyse des données, en mettant l'accent sur les compétences pratiques et l'engagement actif.
Explore les défis et les solutions dans l'analyse des grandes données multidimensionnelles, en mettant l'accent sur les types de données complexes et la détection d'anomalies.
Se penche sur les défis de l'apprentissage profond, en explorant la dimensionnalité, les performances et les phénomènes sur-adaptés dans les réseaux neuronaux.
Explore les bases de l'apprentissage automatique, les conditions conflictuelles, les répercussions sur la vie privée et les défis de déploiement, mettant en évidence les biais et les menaces contradictoires.
Introduit des concepts clés en matière de droits de l'homme, explore la discrimination, les normes sociales et l'impact des algorithmes sur les droits.
Explore l'évolution de l'analyse des données à l'IA et au ML, en mettant l'accent sur les mégadonnées, l'apprentissage automatique et l'interaction avec les médias sociaux.
Introduit un cours sur l'apprentissage automatique des données comportementales à l'EPFL, couvrant les algorithmes ML, le traitement des données et l'évaluation des modèles.
Introduit des bases d'apprentissage automatique, couvrant la segmentation des données, le regroupement, la classification, et des applications pratiques comme la classification d'image et la similarité du visage.