Couvre les méthodes de prédiction sans modèle dans l'apprentissage par renforcement, en se concentrant sur Monte Carlo et les différences temporelles pour estimer les fonctions de valeur sans connaissance de la dynamique de transition.
Explore les sujets d'apprentissage avancés du renforcement, y compris les politiques, les fonctions de valeur, la récursion de Bellman et le contrôle de la TD sur les politiques.
Discute des méthodes d'apprentissage par renforcement profond, en se concentrant sur les mini-batchs et les implications des techniques de formation on-policy et off-policy.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.
Explore l'algorithme SARSA pour l'apprentissage par renforcement, en mettant l'accent sur la mise à jour des valeurs Q et l'importance de l'exploration dans l'apprentissage par récompenses.