Méthodes de décomposition et de régression des erreurs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'apprentissage supervisé, la classification, la régression, les limites de décision, le surajustement, Perceptron, SVM et la régression logistique.
Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, en soulignant l'importance de la complexité du modèle et des différentes méthodes de validation croisée.
Explore les techniques de régression non paramétrique, y compris les splines, le compromis entre les variables de biais, les fonctions orthogonales, les ondulations et les estimateurs de modulation.