Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore l'analyse statistique des données du réseau, qui couvre les structures graphiques, les modèles, les statistiques et les méthodes d'échantillonnage.
Explore l'estimation stochastique du modèle de bloc, le regroupement spectral, la modularité du réseau, la matrice laplacienne et le regroupement des moyennes k.
Explore la gestion des données du réseau, y compris les types de graphiques, les propriétés du réseau dans le monde réel et la mesure de l'importance des nœuds.
Explore les distances sur les graphiques, les normes de coupe, les arbres de couverture, les modèles de blocs, les métriques, les normes et les ERGM dans l'analyse des données du réseau.
Explore les concepts de théorie des graphes, les mesures de centralité et les propriétés de réseau du monde réel, fournissant des informations sur la gestion de divers types de réseaux.
Déplacez-vous dans la centralité et les centres de neurosciences en réseau, explorant l'importance des noeuds, les réseaux de petits mondes, le connectome structural du cerveau et la théorie de la percolation.
Explore la centralité, les hubs, les vecteurs propres, les coefficients de regroupement, les réseaux de petits mondes, les défaillances des réseaux et la théorie de la percolation dans les réseaux du cerveau.