Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la régularisation dans les problèmes les moins carrés, favorisant des solutions optimales tout en s'attaquant à des défis comme la non-unité, le mauvais conditionnement et le sur-ajustement.
Couvre la divergence Kullback-Leibler, la régularisation et les statistiques bayésiennes pour lutter contre le surajustement dans les modèles d'apprentissage automatique.
Explique la rétropropagation dans les réseaux neuronaux, la mise à jour des poids en fonction des erreurs et l'évaluation des réseaux par le biais de pertes d'entraînement et de tests.
Explore la convergence de la descente du gradient pour les fonctions fortement convexes et l'importance de la régularisation dans la prévention des surajustements.
Compare L1 et L0 pénalisation en régression linéaire avec des conceptions orthogonales en utilisant des algorithmes gourmands et des comparaisons empiriques.
Explore les principes fondamentaux de la régression linéaire, en soulignant limportance des techniques de régularisation pour améliorer la performance du modèle.
Discute du surajustement, de la sélection des modèles, de la validation croisée, de la régularisation, des représentations de données et de la gestion des données déséquilibrées dans l'apprentissage automatique.