Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Explore les systèmes d'imagerie à l'information physique, y compris l'imagerie sans lentille, l'apprentissage profond pour les défis d'imagerie, et le développement de modèles de bruit pour les vidéos à faible luminosité.
Explore l'imagerie adaptée à la physique pour les caméras sans objectif et la vidéographie basse lumière, y compris le développement de modèles de bruit et les techniques de dénigrement.
Se penche sur l'utilisation de la mémoire spatiale dans les agents RL pour les tâches de navigation labyrinthe, montrant des performances améliorées avec des repères visuels, mais des résultats incohérents dans le choix du chemin.
Se penche sur le transfert de style photographique, montrant comment les algorithmes peuvent transformer les images pour imiter différents styles et améliorer les photos.
Explore les techniques de délimitation, y compris la transformation de Hough, l'orientation du gradient et la détection de forme, en soulignant l'importance de combiner des techniques basées sur des graphiques et l'apprentissage automatique.