Agents d'apprentissage profond : Renforcement de l'apprentissage
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'importance de la soustraction de la récompense moyenne dans les méthodes de gradient de politique pour l'apprentissage par renforcement profond, réduisant le bruit dans le gradient stochastique.
Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.
Explore l'optimisation des politiques proximales pour améliorer la stabilité et l'efficacité du contrôle continu avec un apprentissage par renforcement profond.
Explore la modélisation d'espaces d'entrée continus dans l'apprentissage par renforcement à l'aide de réseaux de neurones et de fonctions de base radiales.
Explore les défis d'apprentissage en renforcement continu de l'état, l'estimation de la fonction de valeur, les gradients des politiques et l'apprentissage des politiques par l'exploration pondérée.