Explore les paramètres de simulation hydroacoustique, la modélisation des oscillations de masse et les erreurs de validation dans les installations hydroélectriques.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Explore le sous-ajustement, le surajustement, les hyperparamètres, le compromis biais-variance et l'évaluation de modèle dans l'apprentissage automatique.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Explore l'ajustement de la courbe polynomiale, les fonctions du noyau et les techniques de régularisation, en soulignant l'importance de la complexité du modèle et du surajustement.
Explore différents types de mouvement dirigé dans les systèmes cellulaires, en mettant l'accent sur le rôle des protéines motrices dans le transport des biomolécules.