Désambiguïsation des entités et prédiction des liens
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'inférence des connaissances pour les graphiques, en discutant de la propagation des étiquettes, des objectifs d'optimisation et du comportement probabiliste.
Explore la désambiguïsation des entités, reliant les mentions de texte à une base de connaissances, la cohérence dans les graphes d'entités et le PageRank personnalisé.
Explore les algorithmes et les techniques d'extraction de l'information, y compris l'algorithme Viterbi, la reconnaissance des entités nommées, et la surveillance lointaine.
Explore les méthodes d'extraction de l'information, y compris les approches traditionnelles et fondées sur l'intégration, l'apprentissage supervisé, la surveillance à distance et l'induction taxonomique.
Explore les techniques de désambigation des entités, y compris les modèles NER, Viterbi et GPT, en mettant l'accent sur la conception rapide et l'apprentissage en contexte.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore l'extraction de connaissances à partir du texte, couvrant des concepts clés tels que l'extraction de phrases clés et la reconnaissance d'entités nommées.