Apprentissage supervisé : Maximisation des probabilités
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la théorie derrière l'estimation maximale de la vraisemblance, en discutant des propriétés et des applications dans le choix binaire et des modèles multiréponses ordonnées.
Introduit une analyse de régression, couvrant les modèles linéaires et non linéaires, la régression de Poisson et l'analyse du temps de défaillance à l'aide de divers ensembles de données.
Couvre la minimisation empirique des risques, l'apprentissage statistique et des exemples de prédiction du cancer, de prix des maisons et de génération d'images.
Explore la correspondance des données non linéaires avec des dimensions plus élevées à l'aide de la SVM et couvre l'expansion des caractéristiques polynomiales, la régularisation, les implications sonores et les méthodes d'ajustement des courbes.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.