Apprentissage supervisé : Maximisation des probabilités
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles de diffusion, en mettant l'accent sur la production d'échantillons provenant d'une distribution et l'importance de la dénigrement dans le processus.
Introduit la régression linéaire, l'ajustement de la ligne de couverture, l'entraînement, les gradients et les fonctions multivariées, avec des exemples pratiques tels que l'achèvement du visage et la prédiction de l'âge.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Explore le modèle conditionnel gaussien pour la régression linéaire et les propriétés des données gaussiennes, illustré par l'exemple de comparaison du traitement par pierre rénale.
Explore les modèles linéaires pour la classification, y compris les modèles paramétriques, la régression et la régression logistique, ainsi que les mesures d'évaluation des modèles et les classificateurs de marge maximum.
Explore la régression logistique pour la classification binaire, couvrant la modélisation des probabilités, les méthodes d'optimisation et les techniques de régularisation.