Apprentissage supervisé : Maximisation des probabilités
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les principes de régression de mélange gaussien, la modélisation des densités articulaires et conditionnelles pour les ensembles de données multimodaux.
Explore des exemples spéciaux de modèles linéaires généralisés, couvrant la régression logistique, les modèles de données de comptage, les problèmes de séparation et les relations non paramétriques.
Explore les algorithmes d'apprentissage génératif, les règles de décision et les propriétés de distribution gaussienne dans l'apprentissage automatique.
Couvre l'estimation des points, les intervalles de confiance et les tests d'hypothèses pour les fonctions lisses à l'aide de modèles mixtes et de lissage des splines.
Couvre les problèmes linéaires, le LASSO et l'AMP dans l'apprentissage supervisé, y compris les modèles linéaires généralisés et les modèles N-dimensionnels.
Explore la régression linéaire avec et sans covariables, couvrant des modèles capturés par des distributions indépendantes et des outils comme des sous-espaces et des projections orthogonales.
Couvre l'inférence statistique, l'apprentissage automatique, les SVM pour la classification des pourriels, le prétraitement des courriels et l'extraction des fonctionnalités.