Publication de données préservant la vie privée : Synthetic Data Generation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les mécanismes de protection de la vie privée, leurs avantages et leurs inconvénients, et leur application dans divers scénarios, en mettant l'accent sur la protection de la vie privée en tant que bien de sécurité et son importance dans la société.
Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Explore les dynamiques de genre et de classe dans l'appropriation du logement, en soulignant l'importance d'écouter les perspectives des femmes et de repenser les solutions spatiales aux problèmes sociaux.
Explore les techniques de confidentialité des données comme la confidentialité différentielle et l'anonymat k, assurant l'insignifiance statistique pour les bases de données voisines.
Explore les défis de l'anonymat K, de la diversité l et de la désidentification des données, en utilisant des exemples concrets et en discutant des efforts d'Airbnb en matière de protection de la vie privée.