Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les algorithmes distribués pour les systèmes de contrôle en réseau, couvrant le consensus, la régression des moindres carrés et les réseaux de communication variables dans le temps.
Explore les matrices de corrélation, la régression, la variance, les intervalles de confiance et les systèmes normalisés dans la modélisation statistique.
Introduit des bases de régression linéaire du point de vue de la minimisation empirique des risques, couvrant la perte carrée, le prétraitement des données et le calcul du gradient.
Explore la régression quantile pour la prévision des prix de l'électricité en utilisant des données de séries chronologiques, la régularisation et l'astuce du noyau.
Explore la construction et l'application des matrices de Hadamard pour une estimation efficace des principaux effets sans interactions dans la conception de Plackett-Burman.
Couvre l'identification et la spécification du modèle dans l'analyse des séries chronologiques, y compris les modèles d'EI et l'estimation des moindres carrés.