Explore l'analyse stochastique de la descente et du champ moyen dans les réseaux neuraux à deux couches, en mettant l'accent sur leurs processus itératifs et leurs fondements mathématiques.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.