Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.
Explore les défis d'apprentissage avec les déplacements de distribution et la géométrie de perturbation, en mettant l'accent sur des classificateurs robustes et la modélisation de variation naturelle.
Explore l'avancement des modèles système de l'intelligence humaine au moyen d'analyses comparatives intégrées et de l'importance de Brain-Score pour des comparaisons équitables de modèles.
Explore les méthodes de descente de gradient pour l'entraînement des réseaux de neurones artificiels, couvrant l'apprentissage supervisé, les réseaux monocouches et les règles modernes de descente de gradient.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.
Explore l'évolution de la représentation de l'image, les défis dans l'apprentissage supervisé, les avantages de l'apprentissage auto-supervisé, et les progrès récents dans SSL.
Explore les classificateurs gaussiens, la classification des textures, l'estimation des paramètres, l'apprentissage supervisé et les réseaux neuronaux profonds dans le traitement d'images.
Explore les arbres de décision et de régression, les mesures d'impuretés, les algorithmes d'apprentissage et les implémentations, y compris les arbres d'inférence conditionnelle et la taille des arbres.
Plonge dans la dimensionnalité de l'apprentissage profond, la représentation des données et la performance dans la classification des données à grande dimension, explorant la malédiction de la dimensionnalité et le noyau tangent neuronal.