Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
S'insère dans le compromis entre la complexité du modèle et le risque, les limites de généralisation, et les dangers d'un ajustement excessif des classes de fonctions complexes.
Explore les forêts aléatoires en tant que méthode d'ensemble puissante pour la classification, en discutant des stratégies d'ensachage, d'empilage, de renforcement et d'échantillonnage.
Explore les arbres de décision, les ensembles, le CLT, l'inférence, l'apprentissage automatique, les méthodes de diagnostic, l'augmentation et l'estimation de la variance.
Explore la cartographie des atomes dans les réactions chimiques et la transition vers la grammaire réactionnelle à l'aide de l'architecture du transformateur.
Explore l'intersection de l'apprentissage automatique et de la vie privée, en discutant de la confidentialité, des attaques, de la vie privée différentielle et des compromis dans l'apprentissage fédéré.
Explore les solutions de réseau neuronal profond pour l'équation électronique Schrödinger et leur efficacité de calcul dans la physique de nombreux corps.
Couvre les forêts de décision, la formation, les apprenants faibles, l'entropie, la stimulation, l'estimation de pose 3D et les applications pratiques.