Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les réseaux neuronaux convolutifs pour la classification des images, en se concentrant sur les défis de poids, les stratégies de prévention de surajustement et les modèles pré-entraînés.
Explore les arbres de décision dans l'apprentissage automatique, leur flexibilité, les critères d'impureté et introduit des méthodes de renforcement comme Adaboost.
Explore la surparamétrie, la généralisation, le surajustement, le sous-ajustement et la régularisation implicite dans les modèles d'apprentissage profond.
Déplacez-vous dans des représentations neuro-symboliques pour la connaissance du sens commun et le raisonnement dans les applications de traitement du langage naturel.
S'insère dans l'apprentissage continu des modèles de représentation dans l'intelligence cérébrale, mettant l'accent sur l'adaptation rapide aux environnements non structurés.
Explore l'impact de l'imperméabilisation des sols, les statistiques d'utilisation des terres, la segmentation des images et la classification aléatoire des forêts pour une gestion durable des terres.
Explore la règle discriminatoire gaussienne pour la classification à l'aide de modèles de mélange gaussien et discute des limites de dessin et de la complexité du modèle.
Explore les représentations neuro-symboliques pour comprendre les connaissances et le raisonnement communs, en mettant l'accent sur les défis et les limites de l'apprentissage profond dans le traitement du langage naturel.