Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.
Introduit des techniques pour obtenir des estimations impartiales du risque des prédicteurs appris et leur application pour l'accord hyperparamétrique.
Couvre l'interprétation des estimations du risque de validation croisée et la construction d'un prédicteur final à partir des résultats de validation croisée.
Explore les logiciels validés pour la validation continue du système dans des environnements critiques pour la sécurité, en soulignant l'importance de l'assurance en temps réel anticipée et de la validation au niveau sémantique.
Examine la complémentarité des mesures au sol et des mesures par satellite dans la surveillance de la pollution atmosphérique et discute de la relation entre la profondeur optique des aérosols et les PM2,5.