Tests de rapport de vraisemblance: optimisation et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les intervalles de confiance, les tests d'hypothèse, les erreurs standard, les modèles statistiques, la probabilité, l'inférence bayésienne, la courbe ROC, la statistique Pearson, la bonté des tests d'ajustement et la puissance des tests.
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Explore le cadre de la théorie de la décision en théorie statistique, considérant les statistiques comme un jeu aléatoire avec des concepts clés tels que la recevabilité, les règles minimax et les règles Bayes.
S'insère dans la dualité entre les intervalles de confiance et les tests d'hypothèses, soulignant l'importance de la précision et de l'exactitude dans l'estimation.
Introduit une estimation de vraisemblance maximale en économétrie, couvrant les principes, les propriétés, les applications et les tests de spécification.