Tests de rapport de vraisemblance: optimisation et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la méthode de l'élément fini statistique, en mettant l'accent sur la construction d'une mesure préalable, en traitant des erreurs de spécification des modèles et en combinant les données des capteurs avec les modèles FEM.
Couvre le cours de simulations stochastiques, le modèle de file d'attente G/G/1, la finance computationnelle, les statistiques, la physique et l'inférence bayésienne.
Couvre le test du rapport de probabilité dans les modèles de choix, l'analyse comparative et les tests pour les variations du goût et les spécifications non linéaires.
Présente les principes fondamentaux de la simulation stochastique, couvrant l'organisation des cours, les modèles de file d'attente, les finances, les statistiques, la physique et les détails des examens.
Explore les théorèmes limite extrême, les applications comme les données de pluie Vargas, et l'ajustement à la pièce Distributions pareto généralisées.
Plonge dans l'interprétation statistique des réseaux de neurones artificiels, explorant la probabilité de données et maximisant la précision du modèle.