Acteur-Critique Architecture et Avantage-Acteur-Critique
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les méthodes de prédiction sans modèle dans l'apprentissage par renforcement, en se concentrant sur Monte Carlo et les différences temporelles pour estimer les fonctions de valeur sans connaissance de la dynamique de transition.
Explore l'algorithme SARSA pour l'apprentissage par renforcement, en mettant l'accent sur la mise à jour des valeurs Q et l'importance de l'exploration dans l'apprentissage par récompenses.
Couvre les bases de l'apprentissage du renforcement, y compris les processus décisionnels de Markov et les méthodes de gradient des politiques, et explore les applications du monde réel et les avancées récentes.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Discute des techniques avancées d'apprentissage par renforcement, en se concentrant sur des méthodes profondes et robustes, y compris des cadres d'acteur-critique et des stratégies d'apprentissage contradictoire.
Discute des méthodes d'apprentissage par renforcement profond, en se concentrant sur les mini-batchs et les implications des techniques de formation on-policy et off-policy.
Explore la minimisation des risques à partir de données recueillies adaptativement avec des garanties pour l'apprentissage des politiques et l'importance des stratégies d'exploration.
Explore l'optimisation adaptative efficace dans la mémoire pour l'apprentissage à grande échelle et les défis de la mémoire dans la formation de grands modèles.