Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles de signaux concis, la détection compressive, la parcimonie, les normes atomiques et la minimisation non lisse en utilisant la descente de sous-gradient.
Explore les fondamentaux de la régression linéaire, les problèmes de régression non linéaire et la bonté de l'ajustement au carré R, avec des exemples tels que le quatuor d'Anscombe et l'ensemble de données Datasaurus.
S'insère dans les méthodologies complémentaires de choix discret et d'apprentissage automatique, couvrant les notations, les variables, les modèles, les processus de données, l'extrapolation, l'analyse de ce qu'il faut faire, et plus encore.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Déplacez-vous dans des transitions de phase dans des graphiques aléatoires, mettant l'accent sur l'émergence d'une composante géante avec une connectivité variable.
Explore les mesures d'évaluation des modèles, les techniques de sélection, le compromis biais-variance et la gestion des distributions de données biaisées dans l'apprentissage automatique.