Déplacez-vous dans le mélange des changements de temps dans les flux nuls, en soulignant la nature délicate du mélange et sa dépendance à l'égard des singularités.
Présente les chaînes de Markov, couvrant les bases, les algorithmes de génération et les applications dans les promenades aléatoires et les processus de Poisson.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Couvre les probabilités de frappe dans les chaînes Markov avec des sous-ensembles disjoints, la fonction h(i), les théorèmes, les preuves, et le temps prévu pour frapper les calculs.