Réseaux neuronaux d'avant-garde : fonctions d'activation et rétropropagation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les réseaux neuronaux convolutifs pour la classification des images, en se concentrant sur les défis de poids, les stratégies de prévention de surajustement et les modèles pré-entraînés.
Explore l'optimalité des splines pour l'imagerie et les réseaux neuraux profonds, démontrant la sparosité et l'optimalité globale avec les activations des splines.
Introduit les bases de l'apprentissage profond, couvrant les réseaux neuronaux, les CNN, les couches spéciales, l'initialisation du poids, le prétraitement des données et la régularisation.
Couvre une introduction mathématique à l'apprentissage profond, y compris les défis, la puissance des classificateurs linéaires, l'échelle du modèle et les aspects théoriques.
Couvre les questions pratiques et les objectifs de l'apprentissage profond, y compris les types de neurones, l'architecture du réseau, l'optimisation et l'initialisation du poids.
Explore les raisons de l'abondance des points de selle dans l'optimisation de l'apprentissage en profondeur, en mettant l'accent sur les arguments statistiques et géométriques.
Explore la connexion entre les réseaux neuronaux et la théorie quantique du champ, en se concentrant sur la correspondance entre les espaces de paramètres et de fonctions.