Explore les bases de l'optimisation telles que les normes, la convexité et la différentiabilité, ainsi que les applications pratiques et les taux de convergence.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore l'optimalité des taux de convergence dans l'optimisation convexe, en mettant l'accent sur la descente accélérée des gradients et les méthodes d'adaptation.