Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la généralisation, la sélection des modèles et la validation dans l'apprentissage automatique, en soulignant l'importance de l'évaluation impartiale des modèles.
Explore la généralisation de l'apprentissage automatique, en mettant l'accent sur les compromis sous-équipés et sur-équipés, les cadres enseignant-étudiant et l'impact des caractéristiques aléatoires sur les performances du modèle.
Explore les erreurs de phase et de fréquence dans les boucles de suivi PLL et FLL, les exemples de jitters totaux, la variance des erreurs et les fonctions de transfert de boucle.
Explore la correspondance en ligne dans des environnements en évolution, en abordant les défis et les solutions pour adapter les algorithmes à l'évolution des données.
Explore les conclusions de la théorie de l'apprentissage statistique, en mettant l'accent sur la complexité des fonctions, la généralisation et le compromis biais-variance.
Explore les mesures de surajustement et de précision dans la classification des images, en soulignant limportance de la généralisation du modèle et de la précision optimale.