Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Explore les algorithmes et les techniques d'extraction de l'information, y compris l'algorithme Viterbi, la reconnaissance des entités nommées, et la surveillance lointaine.
Explore l'extraction de connaissances à partir du texte, couvrant des concepts clés tels que l'extraction de phrases clés et la reconnaissance d'entités nommées.
Explore les techniques de désambigation des entités, y compris les modèles NER, Viterbi et GPT, en mettant l'accent sur la conception rapide et l'apprentissage en contexte.
Explore les méthodes d'extraction de l'information, y compris les approches traditionnelles et fondées sur l'intégration, l'apprentissage supervisé, la surveillance à distance et l'induction taxonomique.