Applied Machine Learning: Caractéristiques et Modèles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Explore les mesures d'évaluation des modèles, les techniques de sélection, le compromis biais-variance et la gestion des distributions de données biaisées dans l'apprentissage automatique.
Explore l'apprentissage automatique en imagerie cérébrale, en se concentrant sur les schémas spatiaux, les émotions et les compromis entre classificateurs.
Explore le choix des architectures de réseaux graphes neuraux, en évaluant la complexité du modèle et les performances à partir de statistiques de données.
Explore l'apprentissage automatique des droits de l'homme, en mettant l'accent sur la définition des objectifs, le traitement des faux positifs et négatifs, et en assurant la transparence et la confiance.
Explore les critères de performance dans l'apprentissage supervisé, en mettant l'accent sur la précision, le rappel et la spécificité dans l'évaluation des modèles.
Explore les algorithmes d'apprentissage automatique, les techniques de sélection des fonctionnalités telles que les descripteurs FAST et BRIEF, et les limites de l'apprentissage profond.
Discute de l'importance de la collecte de données et de la préparation à la classification, y compris les défis d'étiquetage et les méthodes de crowdsourcing.