Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Introduit les principes fondamentaux de l'apprentissage statistique, couvrant l'apprentissage supervisé, la théorie de la décision, la minimisation des risques et l'ajustement excessif.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Couvre les bases de l'apprentissage automatique, y compris l'apprentissage supervisé et non supervisé, la régression, la classification et le regroupement.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.