Explore le mécanisme d'attention dans la traduction automatique, en s'attaquant au problème du goulot d'étranglement et en améliorant considérablement les performances NMT.
Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Explore la séquence des modèles de séquence, les mécanismes d'attention et leur rôle dans le traitement des limites des modèles et l'amélioration de l'interprétation.
Couvre les modèles de séquence à séquence, leur architecture, leurs applications et le rôle des mécanismes d'attention dans l'amélioration des performances.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.
Explore l'impact de l'apprentissage profond sur les humanités numériques, en se concentrant sur les systèmes de connaissances non conceptuels et les progrès récents de l'IA.
Présente des modèles de langage classiques, leurs applications et des concepts fondamentaux tels que la modélisation et les mesures d'évaluation basées sur le nombre.