Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la relation complexe entre les neurosciences et l'apprentissage automatique, en soulignant les défis de l'analyse des données neuronales et le rôle des outils d'apprentissage automatique.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.
Explore comment les architectures modernes ont vaincu la malédiction de la dimensionnalité et l'importance de la stabilité dans les modèles d'apprentissage en profondeur.
Explore la caractéristique universelle de la formation de prix intrajournalière en utilisant des techniques d'apprentissage en profondeur pour prévoir les changements de prix en fonction de l'historique des flux d'ordres.
Explore l'ensachage en tant que méthode de régularisation dans l'apprentissage en profondeur, en formant plusieurs variantes de modèles sur différents sous-ensembles de données pour améliorer la généralisation.
Explore la quantification de l'incertitude et la détection d'erreurs d'étiquetage dans l'apprentissage profond pour la segmentation sémantique, en mettant l'accent sur les défis et les méthodes de détection d'erreurs.
Explore l'évolution de la représentation de l'image, les défis dans l'apprentissage supervisé, les avantages de l'apprentissage auto-supervisé, et les progrès récents dans SSL.