Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'analyse stochastique de la descente et du champ moyen dans les réseaux neuraux à deux couches, en mettant l'accent sur leurs processus itératifs et leurs fondements mathématiques.
Explore les modèles de diffusion dans la modélisation générative, couvrant lestimation de probabilité, la génération de données et lévaluation des modèles.
Explore l'optimalité des taux de convergence dans l'optimisation convexe, en mettant l'accent sur la descente accélérée des gradients et les méthodes d'adaptation.
Explore l'apprentissage par machine contradictoire, les réseaux d'adversaires génériques et les défis des exemples d'adversaires dans l'optimisation des données.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.