Analyse des données génomiques : techniques et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la normalisation quantile en génomique, en mettant l'accent sur la préparation des données, le chargement, le filtrage et l'importance d'une analyse précise de l'expression des gènes.
Explore la technologie de microarray pour l'analyse des données génomiques, couvrant Affymetrix GeneChip Probe Arrays, le prétraitement des données, la normalisation, l'analyse de l'expression différentielle et les comparaisons de méthodes.
Explore le regroupement des données génomiques, l'analyse de la survie, l'identification des gènes et l'importance statistique dans la recherche sur le cancer.
Explore Kernel K- signifie regroupement, interprétation des solutions, traitement des données manquantes, et sélection des ensembles de données pour l'apprentissage automatique.
Explore les méthodes et applications d'analyse de grappes dans l'analyse des données génomiques, y compris la classification, l'expression des gènes, la visualisation, les mesures de distance et les algorithmes de regroupement.