Modèles génératifs: progrès dans la conception moléculaire
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'application de modèles générateurs profonds dans la découverte de médicaments, en mettant l'accent sur la conception de petites molécules et l'optimisation des structures moléculaires.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Explore l'optimisation décentralisée dans l'apprentissage automatique, en mettant l'accent sur la robustesse, la confidentialité et l'équité dans l'apprentissage collaboratif.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore la dynamique moléculaire Car-Parrinello, une approche unifiée combinant la dynamique moléculaire et la théorie de la densité-fonctionnelle pour simuler divers systèmes, en mettant l'accent sur le contexte historique, les détails techniques et les défis dans les simulations atomistes.
Explore le projet EXSCALATE4COV, axé sur la découverte informatique de médicaments pour les traitements COVID-19 et la collaboration entre le milieu universitaire et l'industrie.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.