Explore l'analyse des données neurophysiologiques, couvrant l'identification AP, les taux de tir, l'activité sous le seuil, l'analyse spectrale FFT et l'analyse déclenchée par des événements à l'aide de MATLAB.
Couvre la conception et l'analyse des réacteurs chimiques, en mettant l'accent sur les réacteurs à lit emballé et les réacteurs à réservoir à spiration continue.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Couvre le processus de formation d'un réseau neuronal, y compris l'avancement, la fonction de coût, la vérification des gradients et la visualisation des couches cachées.
Explore les méthodes d'estimation du spectre paramétrique, y compris les spectres linéaires et lisses, et se penche sur l'analyse de la variabilité de la fréquence cardiaque.
Couvre la vectorisation, les fonctions et le contrôle de flux dans Matlab, en soulignant l'importance d'éviter les variables globales et en fournissant des exemples de graphiques simples et de techniques de débogage.