Intelligence cérébrale : Apprentissage continu des modèles de représentation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.
Discute de l'évolution des réseaux de neurones artificiels, des défis de l'apprentissage supervisé et du rôle des comportements innés dans la formation du comportement.
Explore l'apprentissage auto-supervisé, l'apprentissage par transfert, les tâches de prédiction SSL, l'apprentissage des fonctionnalités, les rotations d'images, l'apprentissage contrasté et les apprenants en vision.
Explore les transformateurs en intelligence visuelle, en se concentrant sur la détection d'objets, la synthèse d'images et la fusion de fonctionnalités.
Explore les modèles de transformateurs moléculaires, la cartographie des atomes, la planification de la synthèse de l'IA et le rôle transformateur des transformateurs dans la chimie.
Plonge dans les applications des réseaux convolutifs au-delà de la reconnaissance d'objets, en mettant l'accent sur leur impact sur les neurosciences, les sciences du cerveau et l'art.