Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'expansion des fonctionnalités polynomiales, les méthodes du noyau, les représentations des données, la normalisation et la gestion des données déséquilibrées dans l'apprentissage automatique.
Explore Kernel K- signifie regroupement, interprétation des solutions, traitement des données manquantes, et sélection des ensembles de données pour l'apprentissage automatique.
Explore le regroupement des données génomiques, l'analyse de la survie, l'identification des gènes et l'importance statistique dans la recherche sur le cancer.
Explore la modélisation des signaux neurobiologiques, en se concentrant sur les pics, la vitesse de tir, plusieurs neurones d'état, et l'estimation des paramètres.
Examine les méthodes de regroupement pour la partition des données en classes significatives lorsque l'étiquetage est inconnu, couvrant les moyennes K, les mesures de dissimilarité et le regroupement hiérarchique.